查准率和查全率公式,查准率和查全率之间的关系

查准率(Precision)和查全率(Recall) 我们将算法预测的结果分成四种情况: 
1. 正确肯定(True Positive,TP):预测为真,实际为真 
2. 正确否定(True Negative,TN):预测为假,实际为假 
3. 错误肯定(False Positive,FP):预测为真,实际为假 
4. 错误否定(False Negative,FN):预测为假,实际为真  
则: 
查准率=TP/(TP+FP)
查全率=TP/(TP+FN)

例1

假设要识别照片中的狗的,在一些照片中,包含12只狗的照片和一些猫的照片。算法识别出有8只狗。在确定的8只狗中,5只实际上是狗(真阳性TP),而其余的是猫(假阳性FP)。该程序的精度为5/8,而其召回率为5/12。

例2

 

例如我们希望用算法来预测癌症是否是恶性的,在我们的训练集中,只有 0.5%的实例是恶性肿瘤。假设我们编写一个非学习而来的算法,在所有情况下都预测肿瘤是良性的,那
么误差只有 0.5%。然而我们通过训练而得到的神经网络算法却有 1%的误差。这时,误差的大小是不能视为评判算法效果的依据的。 
查准率(Precision)和查全率(Recall) 我们将算法预测的结果分成四种情况: 
1. 正确肯定(True Positive,TP):预测为真,实际为真 
2. 正确否定(True Negative,TN):预测为假,实际为假 
3. 错误肯定(False Positive,FP):预测为真,实际为假 
4. 错误否定(False Negative,FN):预测为假,实际为真  
则: 
查准率=TP/(TP+FP)例,在所有我们预测有恶性肿瘤的病人中,实际上有恶性肿瘤的病人的百分比,越高越好。 
查全率=TP/(TP+FN)例,在所有实际上有恶性肿瘤的病人中,成功预测有恶性肿瘤的病人的百分比,越高越好。 

这样,对于我们刚才那个总是预测病人肿瘤为良性的算法,其查全率是 0。 

 

参考以下URL

https://blog.csdn.net/zhang_hongchao/article/details/75127138

https://www.cnblogs.com/zle1992/p/6689136.html

快3导师群肯定(True Positive,TP):预测为真,实际为真 
2. 正确否定(True Negative,TN):预测为假,实际为假 
3. 错误肯定(False Positive,FP):预测为真,实际为假 
4. 错误否定(False Negative,FN):预测为假,实际为真  
则: 
查准率=TP/(TP+FP)例,在所有我们预测有恶性肿瘤的病人中,实际上有恶性肿瘤的病人的百分比,越高越好。 
查全率=TP/(TP+FN)例,在所有实际上有恶性肿瘤的病人中,成功预测有恶性肿瘤的病人的百分比,越高越好。 

这样,对于我们刚才那个总是预测病人肿瘤为良性的算法,其查全率是 0。 

 

参考以下URL

https://blog.csdn.net/zhang_hongchao/article/details/75127138

https://www.cnblogs.com/zle1992/p/6689136.html

Published by

风君子

独自遨游何稽首 揭天掀地慰生平

发表回复

您的电子邮箱地址不会被公开。 必填项已用 * 标注