Resnet 18网络模型[通俗易懂]CNN经典网络模型详解

1. 残差网络:(Resnet) 

残差块:
 

让我们聚焦于神经网络局部:如图左侧所示,假设我们的原始输入为x,而希望学出的理想映射为fx)(作为上方激活函数的输入)。左图虚线框中的部分需要直接拟合出该映射fx),而右图虚线框中的部分则需要拟合出残差映射fx)−x。 残差映射在现实中往往更容易优化。 以本节开头提到的恒等映射作为我们希望学出的理想映射fx),我们只需将右图虚线框内上方的加权运算(如仿射)的权重和偏置参数设成0,那么fx)即为恒等映射。 实际中,当理想映射fx)极接近于恒等映射时,残差映射也易于捕捉恒等映射的细微波动。右图是ResNet的基础架构–残差块(residual block)。 在残差块中,输入可通过跨层数据线路更快地向前传播

Resnet 18网络模型[通俗易懂]Resnet 18网络模型[通俗易懂]

 

ResNet沿用了VGG完整的3×3卷积层设计。 残差块里首先有2个有相同输出通道数的3×3卷积层。 每个卷积层后接一个批量规范化层和ReLU激活函数。 然后我们通过跨层数据通路,跳过这2个卷积运算,将输入直接加在最后的ReLU激活函数前。 这样的设计要求2个卷积层的输出与输入形状一样,从而使它们可以相加。 如果想改变通道数,就需要引入一个额外的1×1卷积层来将输入变换成需要的形状后再做相加运算。 残差块的实现如下

Resnet 18网络模型[通俗易懂]Resnet 18网络模型[通俗易懂]

 

Pytorch代码

import torch
from torch import nn
from torch.nn import functional as F
from d2l import torch as d2l


class Residualnn.Module):  #@save
    def __init__self, input_channels, num_channels,
                 use_1x1conv=False, strides=1):
        super).__init__)
        self.conv1 = nn.Conv2dinput_channels, num_channels,
                               kernel_size=3, padding=1, stride=strides)
        self.conv2 = nn.Conv2dnum_channels, num_channels,
                               kernel_size=3, padding=1)
        if use_1x1conv:
            self.conv3 = nn.Conv2dinput_channels, num_channels,
                                   kernel_size=1, stride=strides)
        else:
            self.conv3 = None
        self.bn1 = nn.BatchNorm2dnum_channels)
        self.bn2 = nn.BatchNorm2dnum_channels)

    def forwardself, X):
        Y = F.reluself.bn1self.conv1X)))
        Y = self.bn2self.conv2Y))
        if self.conv3:
            X = self.conv3X)
        Y += X
        return F.reluY)

验证:1.输入和输出形状一致的情况

blk = Residual3,3)
X = torch.rand4, 3, 6, 6)
Y = blkX)
Y.shape

结果:

torch.Size[4, 3, 6, 6])

验证:2.增加输出通道数的同时,减半输出的高和宽

blk = Residual3,6, use_1x1conv=True, strides=2)
blkX).shape

 

结果:

torch.Size[4, 6, 3, 3])

Resnet18:

18主要指的是带有权重的,包括卷积层和全连接层,不包括池化层和BN层。(BN层是有参数的)

Resnet 18网络模型[通俗易懂]Resnet 18网络模型[通俗易懂]

ResNet的前两层跟之前介绍的GoogLeNet中的一样: 在输出通道数为64、步幅为2的7×7卷积层后,接步幅为2的3×33×3的最大汇聚层。 不同之处在于ResNet每个卷积层后增加了批量规范化层。

 ResNet则使用4个由残差块组成的模块,每个模块使用若干个同样输出通道数的残差块。 第一个模块的通道数同输入通道数一致。 由于之前已经使用了步幅为2的最大汇聚层,所以无须减小高和宽。 之后的每个模块在第一个残差块里将上一个模块的通道数翻倍,并将高和宽减半。

(注意每个残差块的使用,第一次是通道数的变化,所以加入一层卷积层,第二次通道数不变化,所以不要用到卷积层,直接将输入加到输出)

接着在ResNet加入所有残差块,这里每个模块使用2个残差块

 Resnet 18网络模型[通俗易懂]Resnet 18网络模型[通俗易懂]

 Pytorch代码实现:

b1 = nn.Sequentialnn.Conv2d1, 64, kernel_size=7, stride=2, padding=3),
                   nn.BatchNorm2d64), nn.ReLU),
                   nn.MaxPool2dkernel_size=3, stride=2, padding=1))

def resnet_blockinput_channels, num_channels, num_residuals,
                 first_block=False):
    blk = []
    for i in rangenum_residuals):
        if i == 0 and not first_block:
            blk.appendResidualinput_channels, num_channels,
                                use_1x1conv=True, strides=2))
        else:
            blk.appendResidualnum_channels, num_channels))
    return blk


b2 = nn.Sequential*resnet_block64, 64, 2, first_block=True))
b3 = nn.Sequential*resnet_block64, 128, 2))
b4 = nn.Sequential*resnet_block128, 256, 2))
b5 = nn.Sequential*resnet_block256, 512, 2))

net = nn.Sequentialb1, b2, b3, b4, b5,
                    nn.AdaptiveAvgPool2d1,1)),
                    nn.Flatten), nn.Linear512, 10))

验证代码:

X = torch.randsize=1, 1, 224, 224))
for layer in net:
    X = layerX)
    printlayer.__class__.__name__,'output shape:\t', X.shape)

结果:

Sequential output shape:     torch.Size[1, 64, 56, 56])
Sequential output shape:     torch.Size[1, 64, 56, 56])
Sequential output shape:     torch.Size[1, 128, 28, 28])
Sequential output shape:     torch.Size[1, 256, 14, 14])
Sequential output shape:     torch.Size[1, 512, 7, 7])
AdaptiveAvgPool2d output shape:      torch.Size[1, 512, 1, 1])
Flatten output shape:        torch.Size[1, 512])
Linear output shape:         torch.Size[1, 10])

Published by

风君子

独自遨游何稽首 揭天掀地慰生平

发表回复

您的电子邮箱地址不会被公开。 必填项已用 * 标注