前言:
三维点云为三维欧式空间点的集合。对点云的形状描述若使用局部特征,则可分为两种:固定世界坐标系的局部描述和寻找局部主方向的局部描述,ROPS特征为寻找局部主方向的特征描述。
1.寻找主方向(对XYZ轴经过特定旋转)LFR:
<1>.计算法线特征:这一步是非常耗计算量的,若达到可以接受的法线精度,此过程几乎占据了 整个计算过程的50%;可选择的方法有 使用空间树索引建立近邻域,对近邻平面拟合,平面的参数方向既是法线一个方向。
<2>.进行多边形重建:利用贪婪投影的方法进行三角形重建,这个事一个调参数的过程,没有可以完全的方法。
参数有:
gp3.setSearchMethod treeNor); gp3.setSearchRadius Gp3PolyParam.SearchRadius);// Set 最大搜索半径 gp3.setMu Gp3PolyParam.MuTypeValue);// Set typical values gp3.setMaximumNearestNeighbors Gp3PolyParam.MaximumNearestNeighbors); gp3.setMaximumSurfaceAngle Gp3PolyParam.MaximumSurfaceAngle); // 45 度 gp3.setMinimumAngle Gp3PolyParam.MinimumAngle); // 10 度 gp3.setMaximumAngle Gp3PolyParam.MaximumAngle); // 120 度 gp3.setNormalConsistency Gp3PolyParam.NormalConsistency);
<3>.计算整幅图像的ROPS特征:
查找PCL官网的tutoriales:http://pointclouds.org/documentation/tutorials/rops_feature.php。
#include <pcl/features/rops_estimation.h> #include <pcl/io/pcd_io.h> int main int argc, char** argv) { if argc != 4) return -1); pcl::PointCloud<pcl::PointXYZ>::Ptr cloud new pcl::PointCloud<pcl::PointXYZ> )); if pcl::io::loadPCDFile argv[1], *cloud) == -1) return -1); pcl::PointIndicesPtr indices = boost::shared_ptr <pcl::PointIndices> new pcl::PointIndices )); std::ifstream indices_file; indices_file.open argv[2], std::ifstream::in); for std::string line; std::getline indices_file, line);) { std::istringstream in line); unsigned int index = 0; in >> index; indices->indices.push_back index - 1); } indices_file.close ); std::vector <pcl::Vertices> triangles; std::ifstream triangles_file; triangles_file.open argv[3], std::ifstream::in); for std::string line; std::getline triangles_file, line);) { pcl::Vertices triangle; std::istringstream in line); unsigned int vertex = 0; in >> vertex; triangle.vertices.push_back vertex - 1); in >> vertex; triangle.vertices.push_back vertex - 1); in >> vertex; triangle.vertices.push_back vertex - 1); triangles.push_back triangle); } float support_radius = 0.0285f; unsigned int number_of_partition_bins = 5; unsigned int number_of_rotations = 3; pcl::search::KdTree<pcl::PointXYZ>::Ptr search_method new pcl::search::KdTree<pcl::PointXYZ>); search_method->setInputCloud cloud); pcl::ROPSEstimation <pcl::PointXYZ, pcl::Histogram <135> > feature_estimator; feature_estimator.setSearchMethod search_method); feature_estimator.setSearchSurface cloud); feature_estimator.setInputCloud cloud); feature_estimator.setIndices indices); feature_estimator.setTriangles triangles); feature_estimator.setRadiusSearch support_radius); feature_estimator.setNumberOfPartitionBins number_of_partition_bins); feature_estimator.setNumberOfRotations number_of_rotations); feature_estimator.setSupportRadius support_radius); pcl::PointCloud<pcl::Histogram <135> >::Ptr histograms new pcl::PointCloud <pcl::Histogram <135> > )); feature_estimator.compute *histograms); return 0); }