上次讲的是SAR ADC,这次讲最后一个,- ADC。
4.-模数转换器
-转换器也称为过采样转换器,其中表示增量,表示积分或求和。与其他ADC不同,-型ADC不直接对采样数据的值进行量化和编码,而是根据前后值的差值增量)进行量化和编码。因为编码不是为了大的绝对幅度,而是为了增量,所以使用低分辨率的一位量化器可以满足要求。
组成:
-型ADC由两部分组成:简单的模拟电路-调制器)和复杂的数字信号处理电路数字滤波器和采样抽取器)。以一阶 -型ADC为例。它由积分器、比较器、加法电路、时钟和开关以及数字信号处理电路组成。可以说, -转换器的数字特性大于模拟特性。示意图如下:
图1-转换器示意图
工作原理:
1-转换器是一种数字-码,使用低分辨率ADC通常为1位)和高采样率过采样)对模拟信号进行采样并量化增量。
2.送入数字抽取滤波器进行噪声整形和数字滤波技术,提高数字信号的分辨率。
最后,通过采样和提取过程降低输出端的有效采样率,去除冗余信息。
与其他ADC相比, -型ADC本质上是一种以高采样率换取高量化的方案,即以采样率换取分辨率。
-型ADC的原理涉及三个概念:过采样、噪声整形、数字滤波和采样。
过采样:
根据jldhmg采样定律,我们知道当采样频率2个输入信号频率时,可以保留原始数据的信息。采样频率为kfs2时,称为过采样。
在频域上,采样实际上是采样信号与输入信号和量化噪声的卷积,采样频率越高,频带越宽。因此,过采样时,实际上输入信号和量化噪声都是扩频处理,当噪声总功率不变时,扩频后频谱密度会降低。参见图2,以jldhmg频率采样,阴影部分是量化噪声。这时,加一个低通滤波器可以滤除一部分噪声,但效果不明显。图3示出过采样后的低通,矩形量化噪声扩展,但密度低。低通后,更多的噪声将被滤除。
图2 jldhmg频率采样
图3过采样
同时,过采样将降低后端模拟抗混叠滤波器的滚降要求。根据jldhmg准则,要求传输无失真,因此滚降系数越接近0越好,越小,滤波器设计难度越大。过采样会使数字滤波器在前期消除f/2和kf/2之间的量化噪声k为过采样率),从而将总信噪比提高10log10k)。数字滤波器将从输出中消除fS/2和k*fS/2之间的量化噪声,结果是总信噪比提高了10log10k)。即信噪比提高6dB1位),过采样率提高4倍,因此需要合理设计过采样率。
噪声整形:
噪声整形技术通常是指用差分通道)和累加器)设计电路,将量化噪声的频谱密度从原来的均匀分布变为高频分布,如图3所示。整形后的噪声功率不变,但低频功率谱密度远低于整形前。频谱经过调制器整形后,数字滤波器可以消除大部分量化噪声能量,从而大大提高总信噪比以及相应的动态范围)。
图4-调制后的量化噪声
数字滤波和采样:
这部分由数字低通滤波器完成。经过 -调制器后,f/2范围内几乎没有噪声。此时,量化噪声的高频部分被数字滤波器消除,只留下一小部分低频量化噪声。由于之前的过采样,增加了频率,所以滤波后提取数据,将高速低精度的数字信号转换为l
优点:精度高,线性度好,对输入信号的幅度变化不敏感,比积分型模数转换器和电压频率型模数转换器具有更高的转换速率;由于采用了过采样技术,抗干扰能力强。
缺点:高速 – ADC价格相对较高;在相同的转换速率下,功耗高于积分型ADC和逐次逼近型ADC。
应用:
由于过采样技术的应用, -型ADC需要输入频率,如果输入信号频率过高,就会超过器件的极限频率。因此,-型ADC主要应用于高分辨率中低频测量和音频电路。
温度检测电路 -型模数转换器因其精度高、采样率低而得到广泛应用。
-型ADC因其高动态范围,也被广泛应用于数字音频电路中。
至此,介绍了四种经典类型的ADC原理及其应用,被忽略的ADC系列也结束了。在实践中,你会遇到一些其他的种类,这里就不提了。后来在实际工作中,很少遇到硬件调试。但至少你应该这么做。当你看到应用场景的时候,就能反映出它是什么样的ADC,需要注意哪些点。