分类模型的f1值大概是多少_准确率召回率f1分数

欢迎您对PaddleHub提出建议,非常感谢您对PaddleHub的贡献!

目前PaddleHub已实现您提出的需求,请安装PaddleHub>=1.7.0, PaddlePaddle>=1.8.0快速体验。请您在定义task任务时增加metrics_choices=[‘f1’]选项,即可实现多分类F1 Score评估指标,示例如下:

task = hub.ImageClassifierTask

data_reader=data_reader,

feed_list=feed_list,

feature=feature_map,

num_classes=dataset.num_labels,

metrics_choices=[‘f1’], #PaddleHub同时支持’f1’和’acc’评价标准,可使用metrics_choices=[‘f1’, ‘acc’]快速实现

config=config)

发现一个新的问题,ImageClassifierTask设定f1作为metrics时,多分类任务会报错,

metrics_choices = [‘f1’]

错误信息:

[2020-08-07 11:13:35,971] [ INFO] – PaddleHub finetune start

—————————————————————————TypeError Traceback most recent call last) in

—-> 1 run_states = task.finetune_and_eval)

/opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/paddlehub/finetune/task/base_task.py in finetune_and_evalself)

943

944 def finetune_and_evalself):

–> 945 return self.finetunedo_eval=True)

946

947 def finetuneself, do_eval=False):

/opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/paddlehub/finetune/task/base_task.py in finetuneself, do_eval)

964 while self.current_epoch <= self.config.num_epoch:

965 self.config.strategy.step)

–> 966 run_states = self._rundo_eval=do_eval)

967 self.env.current_epoch += 1

968

/opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/paddlehub/finetune/task/base_task.py in _runself, do_eval)

1222 if self.is_train_phase:

1223 if self.current_step % self.config.log_interval == 0:

-> 1224 self._log_interval_eventperiod_run_states)

1225 global_run_states += period_run_states

1226 period_run_states = []

/opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/paddlehub/finetune/task/base_task.py in hook_functionself, *args)

706 for name, func in self._hooks[hook_type].items):

707 if inspect.ismethodfunc):

–> 708 func*args)

709 else:

710 partialfunc, self)*args)

/opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/paddlehub/finetune/task/base_task.py in default_log_interval_eventself, run_states)

849 tag=”{}{}”.formatmetric, self.phase),

850 value=scores[metric],

–> 851 step=self._envs[‘train’].current_step)

852 log_scores += “%s=%.5f ” % metric, scores[metric])

853 logger.train“step %d / %d: loss=%.5f %s[step/sec: %.2f]” %

/opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/visualdl/writer/writer.py in add_scalarself, tag, value, step, walltime)

133 walltime = roundtime.time)) if walltime is None else walltime

134 self._get_file_writer).add_record

–> 135 scalartag=tag, value=value, step=step, walltime=walltime))

136

137 def add_imageself, tag, img, step, walltime=None):

/opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/visualdl/component/base_component.py in scalartag, value, step, walltime)

31 Package with format of record_pb2.Record

32 “””

—> 33 value = floatvalue)

34 return Recordvalues=[

35 Record.Valueid=step, tag=tag, timestamp=walltime, value=value)

TypeError: float) argument must be a string or a number, not ‘tuple’

查看了代码,问题可能出在PaddleHub/paddlehub/finetune/task/classifier_task.py

calculate_metrics)调用的calculate_f1_np)函数应该是只能对2分类任务计算f1、precision和recall。

Published by

风君子

独自遨游何稽首 揭天掀地慰生平

发表回复

您的电子邮箱地址不会被公开。 必填项已用 * 标注