python中reindex方法怎么用

小编给大家分享一下python中reindex方法怎么用,相信大部分人都还不怎么了解,因此分享这篇文章给大家参考一下,希望大家阅读完这篇文章后大有收获,下面让我们一起去了解一下吧!

reindex更多的不是修改pandas对象的索引,而只是修改索引的顺序,如果修改的索引不存在就会使用默认的None代替此行。且不会修改原数组,要修改需要使用赋值语句。

series.reindex)

import pandas as pd
import numpy as np
obj = pd.Seriesrange4), index=['d', 'b', 'a', 'c'])
print obj
d 0
b 1
a 2
c 3
dtype: int64
print obj.reindex['a', 'b', 'c', 'd', 'e'])
1
a 2.0
b 1.0
c 3.0
d 0.0
e NaN
dtype: float64

多出的索引‘e'会被赋值NaN

内插或填充method

obj1=pd.Seriesrange3), index=['a', 'c', 'e'])
print obj1.reindex['a', 'b', 'c', 'd', 'e'],method='pad')
a 0
b 0
c 1
d 1
e 2
dtype: int64

ffill或pad: 前向(或进位)填充

bfill或backfill: 后向(或进位)填充

dataframe.reindex)

dataframe.reindex)可以改变(行)索引,列或两者。当只传入一个序列时,行被重新索引,一次可以对两个重新索引,可是插值只在行侧(0坐标轴)进行

frame = pd.DataFramenp.arange9).reshape3, 3)), index=['a', 'c', 'd'], columns=['c1', 'c2', 'c3'])
print frame
 c1 c2 c3
a 0 1 2
c 3 4 5
d 6 7 8
states = ['c1', 'b2', 'c3']
frame.reindexcolumns=states)
c1 b2 c3
a 0 NaN 2
c 3 NaN 5
d 6 NaN 8

列名不一样的会被赋值nan

frame_na=frame.reindexindex=['a', 'b', 'c', 'd'], method='ffill', columns=states)
print frame_na
 c1 b2 c3
a 0 NaN 2
b 0 NaN 2
c 3 NaN 5
d 6 NaN 8

插值只在行侧(0坐标轴)进行,但是我们可以在其之后,对nan值进行填充

frame_na.fillnamethod='ffill',axis=1)
c1 b2 c3
a 0.0 0.0 2.0
b 0.0 0.0 2.0
c 3.0 3.0 5.0
d 6.0 6.0 8.0

Published by

风君子

独自遨游何稽首 揭天掀地慰生平

发表回复

您的电子邮箱地址不会被公开。 必填项已用 * 标注