这篇文章主要讲解了“什么是二叉树与多叉树”,文中的讲解内容简单清晰,易于学习与理解,下面请大家跟着小编的思路慢慢深入,一起来研究和学习“什么是二叉树与多叉树”吧!
一、树状结构
1、数组与链表
数组结构
数组存储是通过下标方式访问元素,查询速度快,如果数组元素是有序的,还可使用二分查找提高检索速度;如果添加新元素可能会导致多个下标移动,效率较低;
链表结构
链表存储元素,对于元素添加和删除效率高,但是遍历元素每次都需要从头结点开始,效率特别低;
树形结构能同时相对提高数据存储和读取的效率。
2、树结构概念
-
根节点:树的根源,没有父节点的节点,如上图A节点;
-
兄弟节点:拥有同一父节点的子节点。如图B与C点;
-
叶子节点:没有子节点的节点。如图DEFG节点;
-
树的高度:最大层数,如图为3层;
-
路径:从root根节点找到指定节点的路线;
树形结构是一层次的嵌套结构。一个树形结构的外层和内层有相似的结构,所以这种结构多可以递归的表示。经典数据结构中的各种树状图是一种典型的树形结构:一颗树可以简单的表示为根, 左子树, 右子树。 左子树和右子树又有自己的子树。
二、二叉树模型
树的种类有很多,二叉树BinaryTree)是树形结构的一个重要类型,每个节点最多只能有两个子节点的一种形式称为二叉树,二叉树的子节点分为左节点和右节点,许多实际问题抽象出来的数据结构往往是二叉树形式。
完全二叉树
二叉树的所有叶子节点都在最后一层或者倒数第二层,而且最后一层的叶子节点在左边连续,倒数第二 层的叶子节点在右边连续,我们称为完全二叉树
满二叉树
当二叉树的所有叶子节点都在最后一层,并且结点总数= 2^n -1 , n 为层数,则称为满二叉树。
平衡二叉树
平衡二叉树指的是,任意节点的子树的高度差的绝对值都小于等于1,并且左右两个子树都是一棵平衡二叉树,常见的符合平衡树的有,B树多路平衡搜索树)、AVL树二叉平衡搜索树)等。
二叉查找树
二叉查找树BinarySearchTree)不但二叉树,同时满足一定的有序性:节点的左子节点比自己小,节点的右子节点比自己大。
三、二叉树编码
1、基础代码
节点代码
class TreeNode { private String num ; private TreeNode leftNode ; private TreeNode rightNode ; public TreeNodeString num) { this.num = num; } @Override public String toString) { return "TreeNode{num=" + num +'}'; }}
树结构代码
class BinaryTree01 { private TreeNode root ; }
2、遍历与查找
前序遍历查找
先处理当前结点的数据,再依次递归遍历左子树和右子树;
public void prevTraverse) { // 输出父结点 System.out.printlnthis); // 向左子树递归前序遍历 ifthis.leftNode != null) { this.leftNode.prevTraverse); } // 向右子树递归前序遍历 ifthis.rightNode != null) { this.rightNode.prevTraverse); }}public TreeNode prevSearchString num) { //比较当前结点 ifthis.num.equalsnum)) { return this ; } // 递归遍历左子树查找 TreeNode findNode = null; ifthis.leftNode != null) { findNode = this.leftNode.prevSearchnum); } // 左子树遍历命中 iffindNode != null) { return findNode ; } // 递归遍历右子树查找 ifthis.rightNode != null) { findNode = this.rightNode.prevSearchnum); } return findNode ; }
中序遍历查找
先递归遍历左子树,再处理父节点,再递归遍历右子树
public void midTraverse) { // 向左子树递归中序遍历 ifthis.leftNode != null) { this.leftNode.midTraverse); } // 输出父结点 System.out.printlnthis); // 向右子树递归中序遍历 ifthis.rightNode != null) { this.rightNode.midTraverse); }}public TreeNode midSearchString num) { // 递归遍历左子树查找 TreeNode findNode = null; ifthis.leftNode != null) { findNode = this.leftNode.midSearchnum); } iffindNode != null) { return findNode ; } // 比较当前结点 ifthis.num.equalsnum)) { return this ; } // 递归遍历右子树查找 ifthis.rightNode != null) { findNode = this.rightNode.midSearchnum); } return findNode ; }
后序遍历查找
先递归遍历左子树,再递归遍历右子树,最后处理父节点;
public void lastTraverse) { // 向左子树递归后序遍历 ifthis.leftNode != null) { this.leftNode.lastTraverse); } // 向右子树递归后序遍历 ifthis.rightNode != null) { this.rightNode.lastTraverse); } // 输出父结点 System.out.printlnthis); }public TreeNode lastSearchString num) { // 递归遍历左子树查找 TreeNode findNode = null; ifthis.leftNode != null) { findNode = this.leftNode.lastSearchnum); } iffindNode != null) { return findNode ; } // 递归遍历右子树查找 ifthis.rightNode != null) { findNode = this.rightNode.lastSearchnum); } iffindNode != null) { return findNode ; } // 比较当前结点 ifthis.num.equalsnum)) { return this ; } return null ; }
3、删除节点
如果当前删除的节点是叶子节点,则可以直接删除该节点;如果删除的节点是非叶子节点,则删除该节点树。
public void deleteNodeString num) { // 判断左节点是否删除 ifthis.leftNode != null && this.leftNode.num.equalsnum)) { this.leftNode = null ; return ; } // 判断右节点是否删除 ifthis.rightNode != null && this.rightNode.num.equalsnum)) { this.rightNode = null; return ; } // 向左子树遍历进行递归删除 ifthis.leftNode != null) { this.leftNode.deleteNodenum); } // 向右子树遍历进行递归删除 ifthis.rightNode != null) { this.rightNode.deleteNodenum); }}
四、多叉树
多叉树是指一个父节点可以有多个子节点,但是一个子节点依旧遵循一个父节点定律,通常情况下,二叉树的实际应用高度太高,可以通过多叉树来简化对数据关系的描述。
例如:Linux文件系统,组织架构关系,角色菜单权限管理系统等,通常都基于多叉树来描述。