标准偏差Std Dev,Standard Deviation) -统计学名词。
一种度量数据分布的分散程度之标准,用以衡量数据值偏离算术平均值的程度。标准偏差越小,这些值偏离平均值就越少,反之亦然。标准偏差的大小可通过标准偏差与平均值的倍率关系来衡量。(推荐学习:web前端视频教程 )
标准差也被称为标准偏差,标准差Standard Deviation)描述各数据偏离平均数的距离(离均差)的平均数,它是离差平方和平均后的方根,用σ表示。
标准差是方差的算术平方根。标准差能反映一个数据集的离散程度,标准偏差越小,这些值偏离平均值就越少,反之亦然。标准偏差的大小可通过标准偏差与平均值的倍率关系来衡量。平均数相同的两个数据集,标准差未必相同。
计算步骤
样本标准偏差的计算步骤是:
步骤一、每个样本数据 减去样本全部数据的平均值)。
步骤二、把步骤一所得的各个数值的平方相加。
步骤三、把步骤二的结果除以 n – 1)(“n”指样本数目)。
步骤四、从步骤三所得的数值之平方根就是抽样的标准偏差。
总体标准偏差的计算步骤是:
步骤一、每个样本数据 减去总体全部数据的平均值)。
步骤二、把步骤一所得的各个数值的平方相加。
步骤三、把步骤二的结果除以 n (“n”指总体数目)。
步骤四、从步骤三所得的数值之平方根就是总体的标准偏差。
以上就是标准偏差怎么算的详细内容,更多请关注风君子博客其它相关文章!