大家好,又见面了,我是你们的朋友风君子。如果您正在找激活码,请点击查看最新教程,关注关注公众号 “全栈程序员社区” 获取激活教程,可能之前旧版本教程已经失效.最新Idea2022.1教程亲测有效,一键激活。
Jetbrains全系列IDE稳定放心使用
传统的hash 算法只负责将原始内容尽量均匀随机地映射为一个签名值,原理上相当于伪随机数产生算法。产生的两个签名,如果相等,说明原始内容在一定概率 下是相等的;如果不相等,除了说明原始内容不相等外,不再提供任何信息,因为即使原始内容只相差一个字节,所产生的签名也很可能差别极大。从这个意义上来 说,要设计一个 hash 算法,对相似的内容产生的签名也相近,是更为艰难的任务,因为它的签名值除了提供原始内容是否相等的信息外,还能额外提供不相等的 原始内容的差异程度的信息。
而Google 的 simhash 算法产生的签名,可以用来比较原始内容的相似度时,便很想了解这种神奇的算法的原理。出人意料,这个算法并不深奥,其思想是非常清澈美妙的。
Simhash算法
simhash算法的输入是一个向量,输出是一个 f 位的签名值。为了陈述方便,假设输入的是一个文档的特征集合,每个特征有一定的权重。比如特征可以是文档中的词,其权重可以是这个词出现的次数。 simhash 算法如下:
1,将一个 f 维的向量 V 初始化为 0 ; f 位的二进制数 S 初始化为 0 ;
2,对每一个特征:用传统的 hash 算法对该特征产生一个 f 位的签名 b 。对 i=1 到 f :
如果b 的第 i 位为 1 ,则 V 的第 i 个元素加上该特征的权重;
否则,V 的第 i 个元素减去该特征的权重。
3,如果 V 的第 i 个元素大于 0 ,则 S 的第 i 位为 1 ,否则为 0 ;
4,输出 S 作为签名。
算法几何意义和原理
这个算法的几何意义非常明了。它首先将每一个特征映射为f 维空间的一个向量,这个映射规则具体是怎样并不重要,只要对很多不同的特征来说,它们对所对应的 向量是均匀随机分布的,并且对相同的特征来说对应的向量是唯一的就行。比如一个特征的 4 位 hash 签名的二进制表示为 1010 ,那么这个特征对应的 4 维向量就是 1, -1, 1, -1) T ,即hash 签名的某一位为 1 ,映射到的向量的对应位就为 1 ,否则为 -1 。然后,将一个文档中所包含的各个特征对应的向量加权求和, 加权的系数等于该特征的权重。
得到的和向量即表征了这个文档,我们可以用向量之间的夹角来衡量对应文档之间的相似度。最后,为了得到一个 f 位的签名,需要 进一步将其压缩,如果和向量的某一维大于 0 ,则最终签名的对应位为 1 ,否则为 0 。这样的压缩相当于只留下了和向量所在的象限这个信息,而 64 位的签名可以 表示多达 2 64 个象限,因此只保存所在象限的信息也足够表征一个文档了。
比较相似度
海明距离: 两个码字的对应比特取值不同的比特数称为这两个码字的海明距离。一个有效编码集中, 任意两个码字的海明距离的最小值称为该编码集的海明距离。举例如下: 10101 和 00110 从第一位开始依次有第一位、第四、第五位不同,则海明距离为 3.
异或: 只有在两个比较的位不同时其结果是1 ,否则结果为 0
对每篇文档根据SimHash 算出签名后,再计算两个签名的海明距离(两个二进制异或后 1 的个数)即可。根据经验值,对 64 位的 SimHash ,海明距离在 3 以内的可以认为相似度比较高。
假设对64 位的 SimHash ,我们要找海明距离在 3 以内的所有签名。我们可以把 64 位的二进制签名均分成 4 块,每块 16 位。根据鸽巢原理(也成抽屉原理,见组合数学),如果两个签名的海明距离在 3 以内,它们必有一块完全相同。
我们把上面分成的4 块中的每一个块分别作为前 16 位来进行查找。 建立倒排索引。
如果库中有2^34 个(大概 10 亿)签名,那么匹配上每个块的结果最多有 2^34-16)=262144 个候选结果 假设数据是均匀分布, 16 位的数据,产生的像限为 2^16 个,则平均每个像限分布的文档数则 2^34/2^16 = 2^34-16)) ,四个块返回的总结果数为 4* 262144 (大概 100 万)。原本需要比较 10 亿次,经过索引,大概就只需要处理 100 万次了。由此可见,确实大大减少了计算量。
Java 代码实现:
package com.gemantic.nlp.commons.simhash;
import java.math.BigInteger;
import java.util.ArrayList;
import java.util.List;
import java.util.StringTokenizer;
public class SimHash {
private String tokens;
private BigInteger intSimHash;
private String strSimHash;
private int hashbits = 64;
public SimHashString tokens) {
this.tokens = tokens;
this.intSimHash = this.simHash);
}
public SimHashString tokens, int hashbits) {
this.tokens = tokens;
this.hashbits = hashbits;
this.intSimHash = this.simHash);
}
public BigInteger simHash) {
int[] v = new int[this.hashbits];
StringTokenizer stringTokens = new StringTokenizerthis.tokens);
while stringTokens.hasMoreTokens)) {
String temp = stringTokens.nextToken);
BigInteger t = this.hashtemp);
for int i = 0; i < this.hashbits; i++) {
BigInteger bitmask = new BigInteger"1").shiftLefti);
if t.andbitmask).signum) != 0) {
v[i] += 1;
} else {
v[i] -= 1;
}
}
}
BigInteger fingerprint = new BigInteger"0");
StringBuffer simHashBuffer = new StringBuffer);
for int i = 0; i < this.hashbits; i++) {
if v[i] >= 0) {
fingerprint = fingerprint.addnew BigInteger"1").shiftLefti));
simHashBuffer.append"1");
}else{
simHashBuffer.append"0");
}
}
this.strSimHash = simHashBuffer.toString);
System.out.printlnthis.strSimHash + " length " + this.strSimHash.length));
return fingerprint;
}
private BigInteger hashString source) {
if source == null || source.length) == 0) {
return new BigInteger"0");
} else {
char[] sourceArray = source.toCharArray);
BigInteger x = BigInteger.valueOflong) sourceArray[0]) << 7);
BigInteger m = new BigInteger"1000003");
BigInteger mask = new BigInteger"2").powthis.hashbits).subtract
new BigInteger"1"));
for char item : sourceArray) {
BigInteger temp = BigInteger.valueOflong) item);
x = x.multiplym).xortemp).andmask);
}
x = x.xornew BigIntegerString.valueOfsource.length))));
if x.equalsnew BigInteger"-1"))) {
x = new BigInteger"-2");
}
return x;
}
}
/**
* 取两个二进制的异或,统计为1的个数,就是海明距离
* @param other
* @return
*/
public int hammingDistanceSimHash other) {
BigInteger x = this.intSimHash.xorother.intSimHash);
int tot = 0;
//统计x中二进制位数为1的个数
//我们想想,一个二进制数减去1,那么,从最后那个1(包括那个1)后面的数字全都反了,对吧,然后,n&n-1)就相当于把后面的数字清0,
//我们看n能做多少次这样的操作就OK了。
while x.signum) != 0) {
tot += 1;
x = x.andx.subtractnew BigInteger"1")));
}
return tot;
}
/**
* calculate Hamming Distance between two strings
* 二进制怕有错,当成字符串,作一个,比较下结果
* @author
* @param str1 the 1st string
* @param str2 the 2nd string
* @return Hamming Distance between str1 and str2
*/
public int getDistanceString str1, String str2) {
int distance;
if str1.length) != str2.length)) {
distance = -1;
} else {
distance = 0;
for int i = 0; i < str1.length); i++) {
if str1.charAti) != str2.charAti)) {
distance++;
}
}
}
return distance;
}
/**
* 如果海明距离取3,则分成四块,并得到每一块的bigInteger值 ,作为索引值使用
* @param simHash
* @param distance
* @return
*/
public List<BigInteger> subByDistanceSimHash simHash, int distance){
int numEach = this.hashbits/distance+1);
List<BigInteger> characters = new ArrayList);
StringBuffer buffer = new StringBuffer);
int k = 0;
for int i = 0; i < this.intSimHash.bitLength); i++){
boolean sr = simHash.intSimHash.testBiti);
ifsr){
buffer.append"1");
}
else{
buffer.append"0");
}
if i+1)%numEach == 0 ){
BigInteger eachValue = new BigIntegerbuffer.toString),2);
System.out.println"----" +eachValue );
buffer.delete0, buffer.length));
characters.addeachValue);
}
}
return characters;
}
public static void mainString[] args) {
String s = "This is a test string for testing";
SimHash hash1 = new SimHashs, 64);
System.out.printlnhash1.intSimHash + " " + hash1.intSimHash.bitLength));
hash1.subByDistancehash1, 3);
System.out.println"\n");
s = "This is a test string for testing, This is a test string for testing abcdef";
SimHash hash2 = new SimHashs, 64);
System.out.printlnhash2.intSimHash+ " " + hash2.intSimHash.bitCount));
hash1.subByDistancehash2, 3);
s = "This is a test string for testing als";
SimHash hash3 = new SimHashs, 64);
System.out.printlnhash3.intSimHash+ " " + hash3.intSimHash.bitCount));
hash1.subByDistancehash3, 3);
System.out.println"============================");
int dis = hash1.getDistancehash1.strSimHash,hash2.strSimHash);
System.out.printlnhash1.hammingDistancehash2) + " "+ dis);
int dis2 = hash1.getDistancehash1.strSimHash,hash3.strSimHash);
System.out.printlnhash1.hammingDistancehash3) + " " + dis2);
}
}
参考: http://blog.sina.com.cn/s/blog_72995dcc010145ti.html
http://blog.sina.com.cn/s/blog_56d8ea900100y41b.html
http://blog.csdn.net/meijia_tts/article/details/7928579