Conjugate Function

共轭函数

共轭函数的定义:

设函数f:RnR,定义函数f:RnR为: 

fy)=sup<y,x>fx))  xD


此函数称为函数f的共轭函数。即函数yx和函数fx)之间差值的上确界。

如下图所示:

                  

         假设y=2时,yTx的图像是xy那条虚线,而定义式右边的部分是求x等于多少时yTx – fx)的值最大,在上图中我们可以一眼看出,在“和xy平行且是fx)切线的那个点”处两函数的差值最大,假设差值是10,于是我们就求出yTx – fx)的共轭函数的一个点,即f*2) = 10,就这样把y扩展到这个定义域范围内后就得到了整个共轭函数。

 假设有函数fx) = xTQx/2,其中Q是可逆的对称阵,算它的共轭函数,根据定义就是求:gx, y) = yTx – xTQx/2 的上确界。

         于是将gx, y)对x求偏导:

                   g’x,y) = yTx)’ – xTQx/2)’

         因为xTQx对x求偏导的结果是2Qx,所以上式继续推导为:

                   =y – Qx

         另偏导等于0,得:

                   x= Q-1y

         因为是求偏导,所以得到的是上确界,于是把上式代入gx, y)后就得fx)的共轭函数:

                   f*y)= yTQ-1y)/2

负熵函数: fx)=xlogx), xR+,f0)=0,共轭函数 
fy)=supyxxlogx), 在y=logx)+1取最大值,即x=ey1,因此,fy)=ey1.

http://blog.csdn.net/raby_gyl/article/details/53178467

Published by

风君子

独自遨游何稽首 揭天掀地慰生平

发表回复

您的电子邮箱地址不会被公开。 必填项已用 * 标注