Description
Given n, a positive integer, how many positive integers less than n are relatively prime to n? Two integers a and b are relatively prime if there are no integers x > 1, y > 0, z > 0 such that a = xy and b = xz.
Input
There are several test cases. For each test case, standard input contains a line with n <= 1,000,000,000. A line containing 0 follows the last case.
Output
For each test case there should be single line of output answering the question posed above.
Sample Input
7 12 0
Sample Output
6 4
#include <iostream> #include <cstdio> #include <cstring> #include <cstdlib> #include <queue> #include <algorithm> #include <cmath> #include <string> #include <map> #include <set> using namespace std; typedef long long LL ; int eulerint n){ //返回eulern) int res=n,a=n; forint i=2;i*i<=a;i++){ ifa%i==0){ res=res/i*i-1);//先进行除法是为了防止中间数据的溢出 whilea%i==0) a/=i; } } ifa>1) res=res/a*a-1); return res; } int main ){ int x; while~scanf"%d",&x)&&x){ printf"%d ",eulerx)); } return 0; }