学习Elasticsea从零学Elasticsearch系列——基础概念rch系列——1基础概念

系列文章:

从零学Elasticsearch系列——基础概念
从零学Elasticsearch系列——环境搭建
从零学Elasticsearch系列——使用kibana实现ES基本的操作
从零学Elasticsearch系列——深入搜索(Query、Filter、Aggregation)
从零学Elasticsearch系列——JAVA API操作
从零学Elasticsearch系列——集成中文分词器IK
从零学Elasticsearch系列——构建ES集群
从零学Elasticsearch系列——搭建ELK Nginx日志分析平台

一、概述

官网地址: https://www.elastic.co/cn/products/elasticsearch

Elasticsearch是什么

ElasticSearch是一个基于Lucene的搜索服务器。它提供了一个分布式多用户能力的全文搜索引擎,基于RESTful web接口。Elasticsearch是用Java开发的,并作为Apache许可条款下的开放源码发布,是当前流行的企业级搜索引擎。设计用于云计算中,能够达到实时搜索,稳定,可靠,快速,安装使用方便。

Elasticsearch不仅仅是Lucene和全文搜索引擎,它还提供:

分布式的搜索引擎和数据分析引擎
全文检索
对海量数据进行近实时的处理

ElasticSearch的应用场景

全文检索:主要和 Solr 竞争,属于后起之秀。

NoSQL JSON文档数据库:主要抢占 Mongo 的市场,它在读写性能上优于 Mongo ,同时也支持地理位置查询,还方便地理位置和文本混合查询。

监控:统计、日志类时间序的数据存储和分析、可视化,这方面是引领者。

国外:Wikipedia(维基百科)使用ES提供全文搜索并高亮关键字、StackOverflow(IT问答网站)结合全文搜索与地理位置查询、Github使用Elasticsearch检索1300亿行的代码。

国内:百度(在云分析、网盟、预测、文库、钱包、风控等业务上都应用了ES,单集群每天导入30TB+数据,总共每天60TB+)、新浪 、阿里巴巴、腾讯等公司均有对ES的使用。

使用比较广泛的平台ELKElasticSearch, Logstash, Kibana)。

二、基本概念

RESTful介绍

参考资料:

http://www.ruanyifeng.com/blog/2011/09/restful.html

http://www.ruanyifeng.com/blog/2018/10/restful-api-best-practices.html

REST: 表现层状态转化Representational State Transfer),如果一个架构符合REST原则,就称它为RESTful架构风格。

资源: 所谓”资源”,就是网络上的一个实体,或者说是网络上的一个具体信息
表现层:我们把”资源”具体呈现出来的形式,叫做它的”表现层”(Representation)。
状态转化(State Transfer):如果客户端想要操作服务器,必须通过某种手段,让服务器端发生”状态转化”(State Transfer)。而这种转化是建立在表现层之上的,所以就是”表现层状态转化”。就是HTTP协议里面,四个表示操作方式的动词:GET、POST、PUT、DELETE。它们分别对应四种基本操作:GET用来获取资源,POST用来新建资源(也可以用于更新资源),PUT用来更新资源,DELETE用来删除资源。

Elasticsearch中涉及到的重要概念

接近实时(NRT)

Elasticsearch是一个接近实时的搜索平台。这意味着,从索引一个文档直到这个文档能够被搜索到有一个轻微的延迟(通常是1秒)

集群(cluster)

一个集群就是由一个或多个节点组织在一起,它们共同持有你整个的数据,并一起提供索引和搜索功能。一个集群由一个唯一的名字标识,这个名字默认就是“elasticsearch”。这个名字是重要的,因为一个节点只能通过指定某个集群的名字,来加入这个集群。在产品环境中显式地设定这个名字是一个好习惯,但是使用默认值来进行测试/开发也是不错的。

节点(node)

一个节点是你集群中的一个服务器,作为集群的一部分,它存储你的数据,参与集群的索引和搜索功能。和集群类似,一个节点也是由一个名字来标识的,默认情况下,这个名字是一个随机的漫威漫画角色的名字,这个名字会在启动的时候赋予节点。这个名字对于管理工作来说挺重要的,因为在这个管理过程中,你会去确定网络中的哪些服务器对应于Elasticsearch集群中的哪些节点。

一个节点可以通过配置集群名称的方式来加入一个指定的集群。默认情况下,每个节点都会被安排加入到一个叫做“elasticsearch”的集群中,这意味着,如果你在你的网络中启动了若干个节点,并假定它们能够相互发现彼此,它们将会自动地形成并加入到一个叫做“elasticsearch”的集群中。

在一个集群里,只要你想,可以拥有任意多个节点。而且,如果当前你的网络中没有运行任何Elasticsearch节点,这时启动一个节点,会默认创建并加入一个叫做“elasticsearch”的集群。

索引(index)

一个索引就是一个拥有几分相似特征的文档的集合。比如说,你可以有一个客户数据的索引,另一个产品目录的索引,还有一个订单数据的索引。一个索引由一个名字来标识(必须全部是小写字母的),并且当我们要对对应于这个索引中的文档进行索引、搜索、更新和删除的时候,都要使用到这个名字。索引类似于关系型数据库中Database的概念。在一个集群中,如果你想,可以定义任意多的索引。

类型(type)

在一个索引中,你可以定义一种或多种类型。一个类型是你的索引的一个逻辑上的分类/分区,其语义完全由你来定。通常,会为具有一组共同字段的文档定义一个类型。比如说,我们假设你运营一个博客平台并且将你所有的数据存储到一个索引中。在这个索引中,你可以为用户数据定义一个类型,为博客数据定义另一个类型,当然,也可以为评论数据定义另一个类型。类型类似于关系型数据库中Table的概念。

文档(document)

一个文档是一个可被索引的基础信息单元。比如,你可以拥有某一个客户的文档,某一个产品的一个文档,当然,也可以拥有某个订单的一个文档。文档以JSON(Javascript Object Notation)格式来表示,而JSON是一个到处存在的互联网数据交互格式。

在一个index/type里面,只要你想,你可以存储任意多的文档。注意,尽管一个文档,物理上存在于一个索引之中,文档必须被索引/赋予一个索引的type。文档类似于关系型数据库中Record的概念。实际上一个文档除了用户定义的数据外,还包括_index、_type和_id字段

分片和复制(shards & replicas)

一个索引可以存储超出单个结点硬件限制的大量数据。比如,一个具有10亿文档的索引占据1TB的磁盘空间,而任一节点都没有这样大的磁盘空间;或者单个节点处理搜索请求,响应太慢。

为了解决这个问题,Elasticsearch提供了将索引划分成多份的能力,这些份就叫做分片。当你创建一个索引的时候,你可以指定你想要的分片的数量。每个分片本身也是一个功能完善并且独立的“索引”,这个“索引”可以被放置到集群中的任何节点上。
分片之所以重要,主要有两方面的原因:

允许你水平分割/扩展你的内容容量
允许你在分片(潜在地,位于多个节点上)之上进行分布式的、并行的操作,进而提高性能/吞吐量
至于一个分片怎样分布,它的文档怎样聚合回搜索请求,是完全由Elasticsearch管理的,对于作为用户的你来说,这些都是透明的。

在一个网络/云的环境里,失败随时都可能发生,在某个分片/节点不知怎么的就处于离线状态,或者由于任何原因消失了。这种情况下,有一个故障转移机制是非常有用并且是强烈推荐的。为此目的,Elasticsearch允许你创建分片的一份或多份拷贝,这些拷贝叫做复制分片,或者直接叫复制。复制之所以重要,主要有两方面的原因:

在分片/节点失败的情况下,提供了高可用性。因为这个原因,注意到复制分片从不与原/主要(original/primary)分片置于同一节点上是非常重要的。
扩展你的搜索量/吞吐量,因为搜索可以在所有的复制上并行运行

总之,每个索引可以被分成多个分片。一个索引也可以被复制0次(意思是没有复制)或多次。一旦复制了,每个索引就有了主分片(作为复制源的原来的分片)和复制分片(主分片的拷贝)之别。分片和复制的数量可以在索引创建的时候指定。在索引创建之后,你可以在任何时候动态地改变复制数量,但是不能改变分片的数量。

默认情况下,Elasticsearch中的每个索引被分片5个主分片和1个复制,这意味着,如果你的集群中至少有两个节点,你的索引将会有5个主分片和另外5个复制分片(1个完全拷贝),这样的话每个索引总共就有10个分片。一个索引的多个分片可以存放在集群中的一台主机上,也可以存放在多台主机上,这取决于你的集群机器数量。主分片和复制分片的具体位置是由ES内在的策略所决定的。

映射(Mapping)

Mapping是ES中的一个很重要的内容,它类似于传统关系型数据中table的schema,用于定义一个索引(index)的某个类型(type)的数据的结构。

在ES中,我们无需手动创建type(相当于table)和mapping相关与schema)。在默认配置下,ES可以根据插入的数据自动地创建type及其mapping。

mapping中主要包括字段名、字段数据类型和字段索引类型。

Published by

风君子

独自遨游何稽首 揭天掀地慰生平

发表回复

您的电子邮箱地址不会被公开。 必填项已用 * 标注