题意:
给n个矩形,问包含这些矩形的尽量小的凸多边形的面积是多少;
思路:
由于给的矩形的形式是给出了中心的坐标,长和宽以及旋转的角度,所以先转换成四个点的坐标,然后求一遍凸包就好了,第一次写凸包,代码都是白书上的;
AC代码:
#include <iostream> #include <cstdio> #include <cstring> #include <algorithm> #include <cmath> #include <bits/stdc++.h> #include <stack> #include <map> using namespace std; #define Fori,j,n) forint i=j;i<=n;i++) #define mstss,b) memsetss,b,sizeofss)); typedef long long LL; template<class T> void readT&num) { char CH; bool F=false; forCH=getchar);CH<'0'||CH>'9';F= CH=='-',CH=getchar)); fornum=0;CH>='0'&&CH<='9';num=num*10+CH-'0',CH=getchar)); F && num=-num); } int stk[70], tp; template<class T> inline void printT p) { if!p) { puts"0"); return; } whilep) stk[++ tp] = p%10, p/=10; whiletp) putcharstk[tp--] + '0'); putchar' '); } const LL mod=1e9+7; const double PI=acos-1.0); const int inf=1e9; const int N=1e5+20; const int maxn=1e6+4; const double eps=1e-12; struct Point { double x,y; Point double x=0,double y=0):xx),yy) {} }; typedef Point Vector; Vector operator + Vector A,Vector B){return VectorA.x+B.x,A.y+B.y);} Vector operator - Vector A,Vector B){return VectorA.x-B.x,A.y-B.y);} Vector operator * Vector A,double p){return VectorA.x*p,A.y*p);} Vector operator / Vector A,double p){return VectorA.x/p,A.y/p);} bool operator < const Point& a,const Point& b){return a.x<b.x||a.x==b.x&&a.y<b.y);} Vector RotateVector A,double rad){return VectorA.x*cosrad)-A.y*sinrad),A.x*sinrad)+A.y*cosrad));} int dcmpdouble x){iffabsx)<eps) return 0;else return x<0 ? -1:1;} bool operator == const Point& a,const Point& b){return dcmpa.x-b.x)==0&&dcmpa.y-b.y)==0;} double DotVector A,Vector B){return A.x*B.x+A.y*B.y;} double LengthVector A){return sqrtDotA,A));} double AngleVector A,Vector B){return acosDotA,B)/LengthA)/LengthB));} double CrossVector A,Vector B){return A.x*B.y-A.y*B.x;} int ConvexHullPoint *p,int n,Point *ch) { sortp,p+n); int m=0; forint i=0;i<n;i++) { whilem>1&&Crossch[m-1]-ch[m-2],p[i]-ch[m-2])<=0)m--; ch[m++]=p[i]; } int k=m; forint i=n-2;i>=0;i--) { whilem>k&&Crossch[m-1]-ch[m-2],p[i]-ch[m-2])<=0)m--; ch[m++]=p[i]; } ifn>1)m--; return m; } double AreaPoint *p,int n) { double area=0; forint i=1;i<n-1;i++)area+=Crossp[i]-p[0],p[i+1]-p[0]); return area/2; } int main) { Point P[2410],ch[2410]; int t; readt); whilet--) { int n,cnt=0; double sum=0; readn); double x,y,w,h,j,ang; Fori,1,n) { scanf"%lf%lf%lf%lf%lf",&x,&y,&w,&h,&j); sum+=w*h; Point ox,y); ang=-j*PI/180; P[cnt++]=o+RotateVector-w/2,-h/2),ang); P[cnt++]=o+RotateVector-w/2,h/2),ang); P[cnt++]=o+RotateVectorw/2,-h/2),ang); P[cnt++]=o+RotateVectorw/2,h/2),ang); } int m=ConvexHullP,cnt,ch); double ans=100*sum/Areach,m); printf"%.1lf %% ",ans); } return 0; }