一行代码消除 PyTorch 的 CUDA 内存溢出报错,这个 GitHub 项目刚发布就揽星 600+

多少人用 PyTorch“炼丹”时都会被这个 bug 困扰。

CUDA error: out of memory.

一般情况下,你得找出当下占显存的没用的程序,然后 kill 掉。如果不行,还需手动调整 batch size 到合适的大小,有点麻烦。

现在,有人写了一个 PyTorch wrapper,用一行代码就能“无痛”消除这个 bug

有多厉害?

相关项目在 GitHub 才发布没几天就收获了 600 + 星。

一行代码解决内存溢出错误

软件包名叫 koila,已经上传 PyPI,先安装一下:

pip install koila

现在,假如你面对这样一个 PyTorch 项目:构建一个神经网络来对 FashionMNIST 数据集中的图像进行分类。

先定义 input、label 和 model:

# A batch of MNIST image
input = torch.randn8, 28, 28)
# A batch of labels
label = torch.randn0, 10, [8])
class NeuralNetworkModule):
def __init__self):
superNeuralNetwork, self).__init__)
self.flatten = Flatten)
self.linear_relu_stack = Sequential
Linear28 * 28, 512),
ReLU),
Linear512, 512),
ReLU),
Linear512, 10),
)
def forwardself, x):
x = self.flattenx)
logits = self.linear_relu_stackx)
return logits

然后定义 loss 函数、计算输出和 losses。

loss_fn = CrossEntropyLoss)
# Calculate losses
out = nnt)
loss = loss_fnout, label)
# Backward pass
nn.zero_grad)
loss.backward)

好了,如何使用 koila 来防止内存溢出?

超级简单!

只需在第一行代码,也就是把输入用 lazy 张量 wrap 起来,并指定 bacth 维度,koila 就能自动帮你计算剩余的 GPU 内存并使用正确的 batch size 了。

在本例中,batch=0,则修改如下:

input = lazytorch.randn8, 28, 28), batch=0)

完事儿!就这样和 PyTorch“炼丹”时的 OOM 报错说拜拜。

灵感来自 TensorFlow 的静态 / 懒惰评估

下面就来说说 koila 背后的工作原理。

“CUDA error: out of memory”这个报错通常发生在前向传递(forward pass)中,因为这时需要保存很多临时变量。

koila 的灵感来自 TensorFlow 的静态 / 懒惰评估(static / lazy evaluation)。

它通过构建图,并仅在必要时运行访问所有相关信息,来确定模型真正需要多少资源。

而只需计算临时变量的 shape 就能计算各变量的内存使用情况;而知道了在前向传递中使用了多少内存,koila 也就能自动选择最佳 batch size 了。

又是算 shape 又是算内存的,koila 听起来就很慢?

NO。

即使是像 GPT-3 这种具有 96 层的巨大模型,其计算图中也只有几百个节点。

而 Koila 的算法是在线性时间内运行,任何现代计算机都能够立即处理这样的图计算;再加上大部分计算都是单个张量,所以,koila 运行起来一点也不慢。

你又会问了,PyTorch Lightning 的 batch size 搜索功能不是也可以解决这个问题吗?

是的,它也可以。

但作者表示,该功能已深度集成在自己那一套生态系统中,你必须得用它的 DataLoader,从他们的模型中继承子类,才能训练自己的模型,太麻烦了。

而 koila 灵活又轻量,只需一行代码就能解决问题,非常“大快人心”有没有。

不过目前,koila 还不适用于分布式数据的并行训练方法(DDP),未来才会支持多 GPU。

以及现在只适用于常见的 nn.Module 类。

ps:koila 作者是一位叫做 RenChu Wang 的小哥。

项目地址:点此直达

参考链接:点此直达

Published by

风君子

独自遨游何稽首 揭天掀地慰生平

发表回复

您的电子邮箱地址不会被公开。 必填项已用 * 标注